

Federal Aviation Administration's Evaluation of Loran-C I-CNS Conference Briefing 1 May 2002

Mitchell J. Narins
Systems Engineer
Navigation Integrated Product Team
AND-702

Purpose of Evaluation

- To assess whether Loran-C can provide the:
 - Accuracy
 - Availability
 - Integrity
 - Continuity, and
 - Coverage
 - to support Lateral Navigation through all phases of flight
- To assess what other ancillary benefits can be derived from the continued provision of Loran-C services, e.g.,
 - An alternate/robust/backup means of transmitting WAAS corrections to aircraft and other transportation modes
 - A Stratum I timing source to serve as an alternate/robust/ backup in case GPS/WAAS timing becomes unavailable

Current US Loran-C Policy

"While the Administration continues to evaluate the long-term need for continuation of the Loran-C radionavigation system, the Government will operate the Loran-C system in the short term. The U.S. Government will give users reasonable notice if it concludes that Loran-C is not needed or is not cost effective, so that users will have the opportunity to transition to alternative navigation aids. With this continued sustainment of the Loran-C service, users will be able to realize additional benefits. Improvement of GPS time synchronization of the Loran-C chains and the use of digital receivers may support improved accuracy and coverage of the service. Loran-C will continue to provide a supplemental means of navigation. Current Loran-C receivers do not support nonprecision instrument approach operations."

- Recognized the potential for Loran-C to be a robust backup system for:
 - GPS navigation
 - GPS augmentation, and
 - Timing
 - Cellular telephone networks
 - Other applications requiring/benefiting from Stratum I timing
- Made specific recommendations regarding Loran

Volpe Recommendations

- * "In an effort to provide the greatest benefit to the users, encourage the development of affordable vehicle-based backups such as GPS/inertial receivers, and, in the event Loran-C becomes a viable terrestrial backups to GPS, aviation certifiable Loran-C receivers, and GPS/Loran-C receivers."
- *Conduct a comprehensive analysis of GPS backup navigation and precise timing options including VOR/DME, ILS, Loran-C, inertial navigation systems, and operating systems."
- * 'Continue the Loran-C modernization program of the FAA and USCG, until it is determined whether Loran-C has a role as a GPS backup system. If it is determined that Loran-C has a role in the future navigation mix, DOT should promptly announce this to encourage the electronics manufacturing community to develop new Loran-C technologies."

Program Logo Collection

Loran-C Today

- Loran-C is a true, independent, radionavigation system operating 90kHz – 110 kHz
 - i.e., it is not an augmentation of another system
- It may be used as a supplemental navigation source in both en-route and terminal airspace under both visual flight rules (VFR) and instrument flight rules (IFR).
- No Loran-C approach procedures currently exist in the National Airspace System (NAS).

Loran-C Today (2)

Loran-C Navigation Coverage

Loran Issues

<u>Issues</u>

Potential Mitigations

Availability

Precipitation Static H-Field Antenna

Loss of Station Power UPS

Lightning New Lightning Protection

Chain Availability All-in-view receivers

Tube overloads Solid-state transmitters

Accuracy

Old timing sources New cesium clocks

Old timing equipment New timing suite

Tube technology Solid-state technology

Old ASF Corrections

New ASF tables/algorithms

Loran Issues (2)

<u>Issues</u>

Integrity

Manual System

Presumed Integrity

Continuity

Triad-based approaches

Receiver acquisition time

Coverage

Lack of navigation coverage on Alaskan North slope and Southern Florida

Potential Mitigations

Automatic Blink System (ABS)

Loran Integrity Panel

All-in-view navigation

New DSP technology

Additional Loran stations (?)

Status of FY 2001 Activities

- Developed and tested H-Field antennas
 - Locus, Inc.
 - Megapulse, Inc.
- FAATC, USCG Academy, and Ohio University tested all-in-view DSP receivers and H-Field antennas
 - Initial flight testing conducted by US Coast Guard Academy and Ohio University during May 2001 flights based out of Westerly, RI
 - Additional flight testing conducted in June 2001 based out of FAA Technical Center

E-Field - H-Field Comparison

Antenna Efforts (Con't)

Phase I Antenna

Phase II Antenna

Antenna Efforts (Con't)

H-Field Antenna Mounted in Bendix-King ADF Radome

- Alaskan NAS Evaluation Conducted August 21 25
 - Test of all-in-view (AIV) receivers and LOGIC
 - Two aircraft:
 - FAATC Convair 580
 - Ohio University King Air
 - Determine availability of WAAS signal via Geo (W_G)
 - Determine capability and coverage of one Loran station (i.e., Tok) to broadcast WAAS message to aircraft (W_L)
 - Determine ability to provide LNAV navigation to aircraft

Predicted Tok Loran Coverage

Convair Flight Paths

← 23 August: Anchorage - Deadhorse

Actual Tok Coverage/Performance

Where are we now?

- The Loran Evaluation Program is at Milestone/Critical Decision Point II:
 - Issues have been identified
 - Alternative strategies and mitigations have been identified
 - Proof-of-concept demonstrations have been conducted to assess capability of major proposed strategies
 - Integrity Panel determining capability of ensuring required level of protection
 - Studies underway to develop improves ASF values/ASF algorithm to significantly improve Loran accuracy
 - Studies underway to determine best means of broadcasting WAAS/SBAS signal via Loran and whether real requirement exists
 - Efforts underway to integrate GPS/WAAS/Loran receivers and antennas into a signal next generation navigation receiver.

Next Generation NAV Receiver

WAAS'

 $\begin{aligned} \text{WAAS}_{\text{GEO}} \left(\mathbf{W}_{\text{G}} \right) \\ \text{or} \\ \text{WAAS}_{\text{LDC}} \left(\mathbf{W}_{\text{L}} \right) \end{aligned}$

GPS'

L1 or L2 or L5

LAAS

Loran'

All-in-View H-Field Antenna (LNAV)

Inputs

Baro Altimeter (VNAV)

Other

TBD (e.g., Low Cost Gyro)

Next Generation NAV Receiver

WAAS'

 $\begin{aligned} \text{WAAS}_{\text{GEO}} \left(\mathbf{W}_{\text{G}} \right) \\ \text{or} \\ \text{WAAS}_{\text{LDC}} \left(\mathbf{W}_{\text{L}} \right) \end{aligned}$

GPS'

L1 or L2 or L5

LAAS/DGPS

Loran'

All-in-View H-Field Antenna (LNAV)

Inputs

Baro Altimeter (VNAV)

Other

TBD (e.g., Low Cost Gyro)